📢 Gate广场 #NERO发帖挑战# 秀观点赢大奖活动火热开启!
Gate NERO生态周来袭!发帖秀出NERO项目洞察和活动实用攻略,瓜分30,000NERO!
💰️ 15位优质发帖用户 * 2,000枚NERO每人
如何参与:
1️⃣ 调研NERO项目
对NERO的基本面、社区治理、发展目标、代币经济模型等方面进行研究,分享你对项目的深度研究。
2️⃣ 参与并分享真实体验
参与NERO生态周相关活动,并晒出你的参与截图、收益图或实用教程。可以是收益展示、简明易懂的新手攻略、小窍门,也可以是行情点位分析,内容详实优先。
3️⃣ 鼓励带新互动
如果你的帖子吸引到他人参与活动,或者有好友评论“已参与/已交易”,将大幅提升你的获奖概率!
NERO热门活动(帖文需附以下活动链接):
NERO Chain (NERO) 生态周:Gate 已上线 NERO 现货交易,为回馈平台用户,HODLer Airdrop、Launchpool、CandyDrop、余币宝已上线 NERO,邀您体验。参与攻略见公告:https://www.gate.com/announcements/article/46284
高质量帖子Tips:
教程越详细、图片越直观、互动量越高,获奖几率越大!
市场见解独到、真实参与经历、有带新互动者,评选将优先考虑。
帖子需原创,字数不少于250字,且需获得至少3条有效互动
麻省理工推出 PhotoGuard 技术,可保护图像免受恶意 AI 编辑
撰文:Andrew Tarantola
来源:Engadget
Dall-E 和 Stable Diffusion 只是开始。随着人工智能生成系统的普及,以及各公司努力将自己的产品与竞争对手的产品区分开来,互联网上的聊天机器人正在获得编辑和创建图片的能力,Shutterstock 和 Adobe 等公司就是其中的佼佼者。但是,这些新的 AI 功能也带来了我们熟悉的问题,比如未经授权篡改或直接盗用现有的在线作品和图片。水印技术可以帮助减少后者问题,而麻省理工学院 CSAIL 开发的新型“PhotoGuard”技术则可以帮助我们防止前者的出现。
据悉,PhotoGuard 的工作原理是改变图像中的部分像素,从而破坏 AI 理解图像内容的能力。研究团队所说的这些“扰动”,人眼是看不见的,但机器很容易读懂。引入这些伪影的“编码”攻击方法针对的是算法模型对目标图像的潜在表示 -- 描述图像中每个像素的位置和颜色的复杂数学 -- 从根本上阻止了人工智能理解它正在看什么。(注:伪影 (Artifacts) 是指原本被扫描物体并不存在而在图像上却出现的各种形态的影像。)
“编码器攻击会让模型认为(要编辑的)输入图像是其他图像(如灰度图像),”麻省理工学院博士生、论文第一作者 Hadi Salman 告诉 Engadget。“而扩散攻击则迫使扩散模型对一些目标图像(也可以是一些灰色或随机图像)进行编辑。”这种技术并非万无一失,恶意行为者可能会通过添加数字噪音、裁剪或翻转图片等方式,对受保护的图像进行逆向工程。
“涉及模型开发人员、社交媒体平台和政策制定者的协作方法可以有效防御未经授权的图像操纵。解决这一紧迫问题在今天至关重要。”Salman 在一份新闻稿中表示。“虽然我很高兴能够为这一解决方案做出贡献,但要使这一保护措施切实可行,还有很多工作要做。开发这些模型的公司需要投入资金,针对这些 AI 工具可能带来的威胁进行强大的免疫工程设计。”