🎉 #Gate Alpha 第三届积分狂欢节 & ES Launchpool# 联合推广任务上线!
本次活动总奖池:1,250 枚 ES
任务目标:推广 Eclipse($ES)Launchpool 和 Alpha 第11期 $ES 专场
📄 详情参考:
Launchpool 公告:https://www.gate.com/zh/announcements/article/46134
Alpha 第11期公告:https://www.gate.com/zh/announcements/article/46137
🧩【任务内容】
请围绕 Launchpool 和 Alpha 第11期 活动进行内容创作,并晒出参与截图。
📸【参与方式】
1️⃣ 带上Tag #Gate Alpha 第三届积分狂欢节 & ES Launchpool# 发帖
2️⃣ 晒出以下任一截图:
Launchpool 质押截图(BTC / ETH / ES)
Alpha 交易页面截图(交易 ES)
3️⃣ 发布图文内容,可参考以下方向(≥60字):
简介 ES/Eclipse 项目亮点、代币机制等基本信息
分享你对 ES 项目的观点、前景判断、挖矿体验等
分析 Launchpool 挖矿 或 Alpha 积分玩法的策略和收益对比
🎁【奖励说明】
评选内容质量最优的 10 位 Launchpool/Gate
AI搞定谷歌验证码,最新多模态大模型比GPT-4V空间理解更准确
原文来源:量子位
谷歌人机验证已经拦不住AI了!
最新多模态大模型,能轻松找到图中所有交通信号灯,还准确圈出了具体位置。
比如下图中非常细小的部件(region 1),它也可以分辨出来是避震。
“点一点”图像大模型都懂
Ferret解决的核心问题是让引用(referring)和定位(grounding)两方面空间理解能力更加紧密。
引用是指让模型准确理解给定区域的语义,也就是指一个位置它能知道是什么。
定位则是给出语义,让模型在图中找到对应目标。
对于人类来说,这两种能力是自然结合的,但是现有很多多模态大模型却只会单独使用引用和定位。
这样一来,模型就能分辨出边界框几乎一样的对象。
比如下图中两个物体的情况,如果只用离散边界框,模型会感到很“困惑”。和连续的自由形状混合表示相结合,能很好解决这一问题。
因此,Ferret可以接受各种区域输入,如点、边界框和自由形状,并理解其语义。
在输出中,它可以根据文本自动生成每个定位对象的坐标。
Ferret结合了离散坐标和连续特征,形成了一种混合区域表示。
这种表示方法旨在解决表示各种形状和格式的区域的挑战,包括点、边界框和自由形状。
离散坐标中每个坐标都被量化为一个目标框的离散坐标,这种量化确保了模型对不同图像大小的鲁棒性。
而连续特征则由空间感知视觉采样器提取,它利用二进制掩码和特征图在ROI内随机采样点,并通过双线性插值获得特征。
这些特征经过一个由3D点云模型启发的空间感知模块处理后,被浓缩成一个单一的向量, 并映射到大型语言模型(LLM)进行下一步处理。
这个数据集包含1.1M个样本,涵盖了个体对象、对象之间的关系、特定区域的描述以及基于区域的复杂推理等四个主要类别。
GRIT数据集包括了从公共数据集转换而来的数据、通过ChatGPT和GPT-4生成的指令调整数据,并额外提供了95K个困难的负样本以提高模型的鲁棒性。
Ferret模型在LLaVA-Bench和Ferret-Bench上进行评估,在所有任务中都表现出色,特别是在需要指代和视觉grounding的三个新任务上,Ferret的表现很出色。
全华人团队
Ferret大模型由苹果AI/ML和哥伦比亚大学研究团队共同带来,全华人阵容。
有昊轩和张昊天为共同一作。
有昊轩现在为哥伦毕业大学计算机科学博士,毕业后将加入苹果AI/ML团队。2018年从西安电子科技大学本科毕业。
主要研究方向为视觉语言理解、文本-图像生成和视觉语言。
在加入苹果之前,张昊天在华盛顿大学获得博士学位,本科毕业于上海交通大学。
他是GLIP/GLIPv2的主要作者之一,GLIP曾获得CVPR2022的Best Paper Award的提名。
论文地址: